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The solution of an equation of the type AQ = f. where the operator A is 
symmetric and positive. can be reduced to the problem on the minimal 
functional, whereby the solution of the latter always exists if the oper- 
ator A is positive definite [l, 21. The theorem on the minimal functional 
[3] has been established under more general properties of the operator A. 

In case the solution of the equation is not unique. the operator A will 
not possess the mentioned properties. In order to exclude the nonunique- 
ness of the solution, one imposes additional conditions on the region of 
definition of the operator. These conditions are not always obvious or 
convenient for the given problem. In a number of cases, in particular in 
the arisymmetric problem of the theory of elasticity, the nonuniqueness 
of the solution is unessential for the problem. 

In the present work, the theorem on the minimal functional, in the 
general form in which it was considered by Martyntuk [3], has been ex- 
tended to the case when the solution is not unique. This has been done by 
generalizing in a certain sense the properties of the operator. Hence the 
predetermiuatlon of the domain of definition of the operator A has been 
avoided. Qor the sake of shortening the presentation, use has been made 
of [l, 21, and the proofs of theorems similar to those given there have 
been omitted. 

A theorem is used as the basis of the variational method which is used 
in the solution of the axisymmetric problem of thermoelasticity. This 
problem is reduced to the variational problem with the aid of the proof 
of the appropriate inequality. The mean error is determined for the 
approximate solutions. The problem on the axisymmetric deformation of a 
hollow cylinder of finite length under constant temperature is solved. A 
numerical example is considered. 
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The axisymretric problem of therroelasticity 156’7 

1. Let H be a complete Hilbert space. On the linear set M, dense in H, 
there is given the equation 

4 = f, (QEM, iEf4 (1.1) 

where A is a linear (additive and homogeneous) operator defined on M. 

Suppose there exists some linear operator B, such that the linear set 

of elements g = BQEH if REM. We shall assume that this set is dense 

in H. We construct the scalar product (A?, Byr) (where Q, qtEM), and in- 

troduce the following definitions. 

The operator A is said to be synrnetric with the operator B (or simply 

symnetric) if 

‘lhe operator A is said to be positive with the operator B (or simply 

positive) if, in addition to (1.2) 

(49 %) > 0 (QE W (1.3) 

where the equality to zero is attained if, and only if, Bq = 0. Then the 

set of elements for which Aq = 0, and which determine nonunique solutions 

of equation (1.1) are included in the set of elements for which Btp = 0. 
It is assumed that the latter is not dense in H. Thus with the aid of the 

operator B one cannot distinguish the elements Q for whichBQ is the same; 

a zero element will be an element for which Bcp = 0. 

‘l’he following theorem corresponds to the newly introduced definitions. 

If the operator A is positive, then the solution of the equation (1.1) is 

“unique”. 

Assuming that Q1 and Qz are two distinct solutions, A?, = f, Aq2 = f, 
and forming the scalar product of the form (Atp, Bq) for the difference 

Q = 91 - 92 of the solutions, we find (due to the positiveness of the 

operator A) that it is necessary that BQ, = BQ~, i.e. the solutions Q~ 

and Q2 are not distinct in the above sense. From this theorem it follows 

that the scalar products (A?, , Bqtl) and (Aa, BQ~) are equal if BQ, = BQ,. 

We shall now formulate the theorem on the minimal functional. 

Theorem. 1) If the operator A is positive, then the solution of the 

equation (1.1) yields the smallest value for the functional 

J (9) = (4% &) - 2(fs 4)) (1 A) 

2) Conversely, if Q yields a minimum of the functional (1.4) then Q is 
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a solution of the equation (1.1). 

‘Ihe existence of a solution of the variational problem, the problem 
of finding the minimum of the functional (1.4), is established in some 
special space under the assumption that the operator A is positive de- 
finite with the operator B. 

'Ibe operator A is said to be positive definite with the operator B 
(or simply positive definite) if, in addition to (1.2) 

For the elements of the set M, which are distinct in the specified 
sense, we define the scalar product by means of the formulas 

k’, $)B = (&, B’i’), (Cp, +)A = (AR %‘I (1.6) 

One can easily verify that these definitions satisfy the axioms of a 
scalar product [ll . 

Adding to the set M the limit elements according to the metric (1.6), 
we obtain complete Hilbert spaces, which we shall denote by /lB and ll,, 
respectively. The norms of the elements of these spaces are defined by 
the formulas 

It is obvious that M is dense in H, and in HA. 'Ihe connection between 
the spaces H, and HA, for elements belonging to M, is determined by (1.5), 

11 9 iI-4 > 7 II 9 lln 7 T>O (1.7j 

With the aid of (1.7) one can prove a theorem on the imbedding of the 
space HA in HB: with every element of HA one can associate an element of 
HB in such a manner that to distinct elements of IjA there correspond 
distinct elements of HB. Hence the inequality (1.7) is extended over the 
entire space HA. 

The proof of the existence of a solution is based on the fact that 

for every element f E If we have, on the basis of the Cauchy-Buniakovskii 

formula, and by (1.7). the following inequality 

II f II 
IV, ~~)l~llfllll~ll~~~~Il~ll~~ qEM 

i.e. (f, &I) is a functional that is bounded in HA. Hence by the theorem 

of Riesz [I] there exists a unique element T,-, in HA in terms of which 

one can express the functional in the form (f, Bp) = (9. vO)~. Assuming 



The axisynmetric problem of therroelasticity 1569 

that J(q) is defined in the entire space HA, and taking into account (1.6)) 

we find that 

J (~4 = (cp, NA- 2 (cp, cpo)A = II v - cpo L2 - II % IIA 2 (1.8) 

min J (cp) = - II 'PO llA2, for ‘p=‘po 

From this it follows that the element which makes the functional (1.4) 
a minimum can not belong to M, the domain of definition of the operator A. 
In this case we have a unique solution in the extended domain of defini- 
tion of the operator A, i.e. in the space HA. To it there will correspond 

in the space H9 some limit element g* = BqP = lim hn, qnE M (the limit 
is here understood in the sense 11 q* - qn 119 - 0, n - 03). The solutions 
which do not belong to M will be called generalized solutions. 

we now assume that the space ffA is separable, and we shall try to con- 

struct in it a solution of the variational problem. Let q,,, be a complete, 

orthonormalized sequence of elements in HA, i.e. 

((~TI,%I)A = 0, if n#m, 11 %!A = 1 (n = 1,2...) (f.9) 

An element q0 which might make the functional J(q) a minimum can now 

be expressed as an expansion in terms of the orthogonal functions 

To = 5 ((Po,%)A'% = ?I (f~ B%)(Pn (1 .lO) 
?a=1 -1 

If in the solution (1.10) one takes a finite number of terms of the 

series, then the sequence of elements 

will be a minimizing sequence since 

If we are given in M a system of elements v,,, which is linearly inde- 

pendent and complete in HA, then substituting in (1.4) a linear combina- 
tion of these elements 

we obtain J(ry") as a function of the parameters ak. Formulating the con- 
ditions for a minimum of the function J(ak), we obtain a system for the 

determination of the coefficients 
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WI, wh) Ql + - - * + w&n, &t) Qm = (1, &J (n= 1,2,...,m) (1.12) 

One can show [l] that y” is a minimizing sequence when m - 0~ if the ak 
are determined by the equations (1.12). 

Simultaneously one establishes the convergence of the method of Ritz 

in the form (1.12) (or the method of squares Ritz [31). Galerkin’ 8 method 

leads to the same type of system of equations for the determination of 

the ak in (1.11) 

WP - I, W,) = 0 (n=1,2,...,m) (i.13) 

Hence, this method will also converge if the operator A has the above 

specified properties. The equations (1.13) coincide with one of the 

generalized forms of Galerkin’s method proved by several authors [4-61 

under the assumption of the uniqueness of a solution. 

In what follows we shall assume that the.space ff is the space of 

square-sumnable functions with some weight p (p is a positive function), 

i.e. I? is an L*(p) space which has been shown [71 to be a complete, 

separable, Nilbert space. 

2. The axisynvnetric problem of thermoelasticity, for the case of a 

circular cylinder of finite length, can be reduced to the solution of an 

equation in the potential function q(p, 5) 

Here, R is the outer radius of the cylinder; r. is the inner radius, 

L the length of the cylinder. The function ~(p, 5) is determined by the 

formulas 

and satisfies the boundary condition (the problem is solved for the 

stresses) 

1 - p a2qJ 
Dq=O, &&=-- p ag” 

if p= 1 
i 
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This can easily be verified by substituting (2.2) into the equations 
of equilibrium and into the condition of density, and by taking into 
account Hooke’s law and temperature deformations [81, e.g. in the case 
when the cylinder is subjected only to the effect of temperature t(p, 0, 
whose distribution in the cylinder is determined by the equation 

In this case 

FL = 0, Frs = 0 (2.4) 

F,=&i tpdp(i-$)-+f\ tpdp 

If on the right-hand side of the equation of heat conduction, and in 

(2.4), in place of fl(p, 5) one considers at/d, + f2(p, <), where T is 
time, then one obtains the case of a quasistationary problem. 

The domain of definition of the operator A = p-‘A,* will be 
of functions four times differentiable with respect to p and 5 
satisfying the boundary conditions (2.3). It has been proved 
such a set is dense in L,(p), where in the given case p = p. 

! the set M 

i2rzhat 

We shaI1 show that the operator A = p-‘A,* is positive definite with 
the operator B = - p_lD. 

‘lhe solution of the equation is not unique and can be determined to 
within (p” = a,, + a2P2 + (b. + b,p*)<. It is easily seen that q” is the 
general expression of the zero element defined by Bq” = 0. The space ffB 
in which the solution is sought will be determined by the scalar product 
and the norm 

((P,$)B =‘s i $W 9 dPK !I cp II ;= ‘I 5 $ (&Y dPdC (2.5) 
0 P. 0 P. 
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Integrating by parts, and taking into account the condition (2.3), we 

obtain 

Interchanging 9 and y in this equation, we find that (AT, ByI = (.4q1, 
Bqa), i.e. the operator A is symmetric. From (2.6) we obtain 

Let us establish the inequality 

1 1 II ax2 
Xl2 - pz xo2 < y s 0 p 5 dp 

PO 

(2.7) 

(2.8) 

Here x = r(p), xl = x( 1) , x0 = x(p,) , 0 d p,, < 1. Suppose that ~1 and 
x,, have the same sign. Let us set x0 = kxl, 0 < k < 1. Then, obviously 

(I - k) xi = Ii - x0 = 
‘ax 

s a?;dP 
PI 

Applying Hiilder’s inequality [g] , we obtain 

Nhence 

f (PO, 4 = 
(1 - PO? (PZ - kZ) 

2pd (I - k)B 

It Is easy to verify that f(pe, k) does not have an extremum in the 

region 0 < pe < 1, 0 < k < 1, whereas f S l/2 when k = po2. Obviously, f 

will not have an extremum also on the single-values curve k = pun, n > 1. 

The function 

f (ps) = (1 - POP) (1 - PO+*) I2 (1 - PO”)’ 
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will then attain its largest and smallest values when p. = 0 and p = 1. 

f (0) = 0, 
ZfR-1) i 

fyf(~0) = ng -Q2 

If x1 and x0 have different signs, then by the assumed continuity of 
x(p), there exists a value p = pa for which x(pJ = 0. Then 

This establishes the inequality (2.8). 

From (2.8) it follows that 

Making use of (2.91, one can now easily establish the positiveness of 

the operator A. 

Let us omit from (2.7) the obviously positive terms, so that 

From (2.3) it now follows that: p = pa, p = 1; 5 = 0, j = I; v = 0, 

i.e. on the perimeter of the rectangle v = 0. 

Friedrichs' [lo] inequality can now be applied and we obtain 

ji[(~)'+(~)']dpd6~y25iv2dpd5 = ~~\j+(@)~dpdl 
0 P" 0 PI 0 Pm 

This shows that the operator A is positive definite (1.5). 

Thus, the solution of equation (2.10) can be determined as the solu- 

tion found from the condition that the functional 

be a minimum. 

Let us determine the nature of the convergence of the approximate 
solution to the exact one. (In the sequel, the integration with respect 

(2.10) 
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to 5 will be between the limit 0 snd 1, and with respect to p from p,, to 1; we 
shall not indicate these limits from now on.) If q,, is a solution of the vari- 
ational problem. while qua is a minimizing sequence, then by (1.8) it follows 
from the condition 

J ~(Pn~=II(Pn-~ll~2-II~oll~2-,- IIcpollA2 (2.11) 

that ll qn - p,, 11,’ - 0, mre II p II A2 = (4, BqO. and is equal to (2.7). Sub- 
st itut ing ?a - qu into (2.7) in place of (9, and taking into account (2.9)) we 
obtain 

(2.12) 

i.e. the functions p-1 am,jap, p-laDqnjag, p-laa(p,/apaL2 converge to the cor- 
responding functions of the exact solution in the mean and with the weight p. 

Let us Drove the ccmrergence in the mean also for 

F2 99,. We caasider the identity 
the functions p-*&b /a<*. 

Making use of the inequality (O + b) * d 2( a2 + b2). we obtain 

If the first integral on the right-band side is larger than the second one, 
then, by using the Cauchg-Buniakovskil inequality, we obtain 

(2.13) 

If the second integral is larger tbsn the first one, then the validity of the 
inequality (2.13) is obvious In view of (2.9). Let us consider still another 
identity. In view of (2.3) we have 

Applying HBlder’ s inequality se obtain 

(SS(8,‘pdpd~~6SS(S)Ppdpd6~F(~~)apdpd5 
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Whence 

(2.14) 

Substituting p,, - p, in (2.13) and (2.14) in place of q), and taking into 

account (2.12)) we find that the functions p -2a2~ / a g2, pS2 Dqn converge in the R 
mean to the functions p -2a2vo/ a i2, and pe2 Dq+,, respectively. 

All of these quantities, of which the convergence in the mean has been proved, 

and only these quantities, occur in the expressions for the stress in (2.1). 

Therefore, it is now easy to establish the convergence in the mean of the 

stresses themselves. Let uhr and ug,, defined by the formulas (2.1)) correspond 

to the approximate oh, and to the exact Q solutions. Then 

Making use of Minkovskii’s inequality [91, we obtain 

The convergence of the quantities on the right-hand side has been proved, and 

the convergence in the mean with weight p of the functions unr and aer has there- 

by also been established. The convergence for the remaining stresses is proved 

in an analogous q snner. 

Since every term on the right-hand side of the inequality is less than 

211 ‘p, - 9, II,4 be cause of the relations (2.12) to (2.14), it follows that the de- 
viation in the mean of the approximate values of the stresses from the exact 

values csn be appraised as 11 T,, - TO 11 A’ 

From (2.11) it is obvious that 11 9, - p0 [IA2 = J( ,J + II Q IjA2, and if there 

exists a quantity 6 such that 6 < -11 Q,, II:, or -6 >,I T,, 11, then t 

This estimate will become more precise if 6 comes closer to - Q A2. It is II II 
natural to try to determine a functional which would converge to min J(g) = 

- lb0 t/A2 from below, i.e. one whose maximum would be the min J(T). The con- 

struction of this functional will be carried out in accordance with a general 

idea of F’riedrichs. extended by Sobolev [II] to partial derivatives of high order, 

whose solution is connected to the problem on the minimal functional. Let us 

apply Sobolev’s method to the functional ( 2.10). Let us represent (2.10) in the 
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form 

(2.16) 

mere Q(q) is given by (2.7). 

The equation (2.1) will be a natural condition for a minimum of the 
functional J(q) [lo]. Let w make the change of variables &I = II, 
a2q4ac2 = u in O(q). Then the formula (2.7) yields 

WC - (1 - PL) 1 [vz (1) - $ va (PO)] dr, (2.17‘ 

The equation (2.1) will take on the form 

ak a2v 
Duf2,6”fa58=f (2.18) 

If gas is nor the exact solution of the problem on the minimum of the 
functional (2.16), then. setting uO = @.p,, uO = a2g+,/a52, we obtain the 
following expressions for u,, and uO on the basis of (2.3) 

IL0 = 0, 
avo 1-P 
ap=pvo if p= “1” 

{ 
ug = 0 

au0 ) --_o 
at - 

if c= i (2.19) 
{ 

In view of the inequality (2.9). we have @(u, u) >, 0. Replacing u and 
v in (2.17) by the differences uO - u,, and u,, - v,, where u, and u,, are 
arbitrary functions, we find that O(u, - un, u,, - u,,) > 6. If, for example, 
the following boundary conditions 

lb, = 0, 
3% 1-P 
---v, if p=po, p=l 
aP- P 

are satisfied, then @(IA, - u,,, v,, - u,,) = 0. if, and only if, a,, = a,,, 

‘n 
= 

UO’ 

Let us subject un and II, to the additional conditions (2.18). which is 
natural to do when un - u. and u, - uo. Then 

0 (uo - u,, vo - v,J = 0 (uo, vo) + 0 (u,, v,J - F (~0, vo, u,,, v,J 

On the basis of (2.19), and the identity a2uo/a<2 = Duo, the F in this 

last displayed equation equation can be found by integration by Parts in 
the form 

AOW uvu,, uo) - F = J(qo) = min J(T), and since @( un, un)f min J(Q) SO, 
it follows that 
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max [- Cp (u,, v,)] = min J (cp) for u, + uo, Vn -+ vo 

Hence it is obvious that 

a =- aI (u,, v& 

If one sets U, = &, V, = a2ry/ac2, one obtains 6 = - 8(y), where Y is 
a solution of the equation (2.1). which in accordance with (2.20) Satis- 

fies the cond:tions 

P = PO, P=C Iht,=G, 

One can show that all stresses satisfy 
equality 

a3 ~---CL 8% -_-- 
apap - p ap (2.21) 

at least the fairly rough in- 

if none of them is identically zero. 

3. Let us apply Galerkin' s method (1.13) to the solution of the 8Xi- 

symmetric problem. We select a system of functions in the form qnr = 
x,(p)y,(3). For the purpose of obtaining 8 simpler system of equations 
(1.13). we determine the x,(p) as the characteristic functions of the 
equation 

v(pz,>==-~~*pza, Z*=h*, P=Po, P=f, Z*=G 

Then the chsracteristic functions, which have been orthonormalized 
with the weight pt will be of the form 

2, = Dx, = c,& (&,P), &(5,p) = N&,)Jl (&P) - Jl (h,) N1 (&p) 

cn = l/z [zo* (h,) - Po’ZoS (&Po)l-“x* 2, (Q) = NI (&JJa (&,P)- Jr(&) N* t&p) 

Here Jo, .il, N, 8nd N, 8re Bessel functions of the first and second 
kind of the zero-th and first order; A, is a root of the equation 

Zl (&PO) = G (3.1) 

As is known [12], the indicated system of functions will be complete 

in L,(p). By integration we obtain 
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The function x, satisfies the conditions 

P = PO, P =I, DZ, = 0, PaZ,/aP=(~-MZ, 

We determine the y, as orthonormalized characteristic functions of 

the epuation 

Thus we find 

where vII is a root of the equation cash vnl cos vSl = 1; hence, if 

v1 1 = 4.730, v21 = ‘7.853. the remaining roots can be determined with 

sufficient accuracy by the formula 

vml=msC++t2, m=3,4.., 

As is known [IO], the system of functions y, is complete in L2. 

By the definition of x,, and y,, the system of functions qn,,, will be a 

complete system of elements in I in the subspace N8. From (2.5) and (2.7) 

it fOllOWS that HA c ff8, since the elements of HA have to have deri- 

vatives of higher order than those of the elements of HR. Hence, the 

SyStSm of functions is also complete in f/A. Furthermore, this SyStem is 

orthonormalized in H8, and it is, therefore, strongly minimal in HA, and 

the method of Ritz (1.12). and the equivalent method of Galerkin (I. 13). 

applied to this problem below, will be stable [131. 

We shall look for a solution in the form 

The system of equations (1.13) will have the following form in this 

case (3.21 

Here 

f n.m = - Cn ss - 21 (A,,P) em (5) ! (P, i) dPd6 
0 Ps 
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16 vkz v,,,= ’ 

( 

sin v,l sin vml 
Umk== 

akm= f 1( Vk4-Vm3 'k 1 rfi-cosvkI -Vmlfcosvml ) 

sin vmZ 
u mm =f 1fcosvmL > 

The plus sign must be used in the case when h and R are odd, while 

the minus sign applies when k and s are even. If, however, one of the 

number k or D is odd while the other one is even, then okr = 0. This 

latter condition leads to the result that the system of equations (3.2) 

separates into two independent systems of equations with a smaller number 

of unknown quantities. This simplifies the practical application of the 

system of equations (3.2) considerably. It is easy to see that the matrix 

of the coefficients of the Aik is symmetric. 

Let us consider an example on the application of the system (3.2). 

Suppose that on the inner side wall of the cylinder there is given a con- 

stant temperature to, and that on the outer surface o‘f the side wall the 

temperature is zero. 

In this case a solution of the equation of heat conduction will be 

t = to In plln pe. By the fornulss (2.4) snd (3.2) we obtain f = -Eat,/ 

(1 - id In p() 

f 4 

4 sin v_$ E&o 
nm3 vrn ‘J~(~+cos~,~) (1 -vIL)ln PO t 

m = 2k -I- i, fntn -2 0, m = 2k 

(k=O,i, 2...) 

Suppose that the ratio of the inner radius to the outer radius is 

po = 0.5, and that the length of the cylinder L = 2R, i.e. 1 = 2. We 
shall perform the analysis under the assumption that N = 2. We determine 

the roots of the equation (3.1) from tables [X41. We find that h, ‘6.393, 

h2 = 12.625. Solving the system of equations (3.2). we obtain 

All = - 0.0259 Eat*, An = 0.00107 &to, &A = 0, An=0 

and, therefore 

cp, = [A11=1 (P) + A21rs (P)I ~1 f<) 

Let us commute the max Oz 8nd max 06, when p = po, where they take on 

small values 
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max o, = c, (0.5,i) = - 0.629 Eato, max cs = oe (0.5,1) = - 0.426 Eat,, 

The values of the stresses when p = pe = 0.5, computed by means 
formulas for an infinitely long cylinder [8], will be equal to q ax 
max 06 = - 0.874 Eat,,, which shows that the max a6 is almost twice 
large as the value given above. The function 

of 
ox = 
as 

is a solution of the equation (2.1) for the given example. which satis- 

17) fies the conditions (2.21). Hence, in accordance with (2. 
we obtain 

10) and (2. 

v/J (cp,) f CD (0) = r/J (cp,) - 8 = 0.065 Eat0 

i.e. the mean error for the stresses does not exceed 2046 of their maximum 
value. 
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