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The solution of an equation of the type Ap = f, where the operator 4 is
symmetric and positive, can be reduced to the problem on the minimal
functional, whereby the solution of the latter always exists if the oper-
ator A is positive definite [1,2]. The theorem on the minimal functional
[3] has been established under more general properties of the operator A.
In case the solution of the equation is not unique, the operator A will
not possess the mentioned properties. In order to exclude the nonunique-
ness of the solution, one imposes additional conditions on the region of
definition of the operator. These conditions are not always obvious or
convenient for the given problem. In a number of cases, in particular in
the axisymmetric problem of the theory of elasticity, the nonuniqueness
of the solution is unessential for the problem.

In the present work, the theorem on the minimal functional, in the
general form in which it was considered by Martyniuk [3]. has been ex-
tended to the case when the solution is not unique. This has been done by
generalizing in a certain sense the properties of the operator. Hence the
predetermination of the domain of definition of the operator A has been
avoided. Por the sake of shortening the presentation, use has been made
of [1,2], and the proofs of theorems similar to those given there have
been omitted.

A theorem is used as the basis of the variational method which is used
in the solution of the axisymmetric problem of thermoelasticity. This
problem is reduced to the variational problem with the aid of the proof
of the appropriate inequality. The mean error is determined for the
approximate solutions. The problem on the axisymmetric deformation of a
hollow cylinder of finite length under constant temperature is solved. A
numerical example is considered.
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The axisymmetric problem of thermoelasticity 1567

1. Let H be a complete Hilbert space. On the linear set M, dense in H,
there is given the equation

Ap = f, (PEM, jEH) (1.1)

where A is a linear (additive and homogeneous) operator defined on M.

Suppose there exists some linear operator B, such that the linear set
of elements g = B &=H if ¢ =M. We shall assume that this set is dense
in H. We construct the scalar product (A¢, By) (where 9, y& M), and in-
troduce the following definitions.

The operator A is said to be symmetric with the operator B (or simply
symmetric) if

(49, By) = (4, By), (9, v M) (1.2)

The operator A is said to be positive with the operator B (or simply
positive) if, in addition to (1.2)

(49, Bg) > 0 (e M) (1.3)

where the equality to zero is attained if, and only if, B¢ = 0. Then the
set of elements for which A¢ = 0, and which determine nonunique solutions
of equation (1.1) are included in the set of elements for which Bp = 0.
It is assumed that the latter is not dense in H. Thus with the aid of the
operator B one cannot distinguish the elements ¢ for which Bg is the same;
a zero element will be an element for which Bp = 0.

The following theorem corresponds to the newly introduced definitions.
If the operator A is positive, then the solution of the equation (1.1) is
"llniqlle".

Assuming that ¢, and ¢, are two distinct solutions, A, = f, Ag, = f,
and forming the scalar product of the form (Ap, Bg) for the difference
@ = ¢, — @, of the solutions, we find (due to the positiveness of the
operator A) that it is necessary that Bg, =Bg¢,, i.e. the solutions ¢,

and ¢, are not distinct in the above sense. From this theorem it follows
that the scalar products (Ae,, Be,) and (Aq, Bp,) are equal if Bp, =Bg,.

We shall now formulate the theorem on the minimal functional.

Theorem. 1) If the operator A is positive, then the solution of the
equation (1.1) yields the smallest value for the functional

J (9) = (49, Be) — 2(f, By) (1.4)
2) Conversely, if ¢ yields a minimum of the functional (1.4) then ¢ is
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a solution of the equation (1.1).

The existence of a solution of the variational problem, the problem
of finding the minimum of the functional (1.4), is established in some
special space under the assumption that the operator A is positive de-
finite with the operator B.

The operator A is said to be positive definite with the operator B
(or simply positive definite) if, in addition to (1.2)

(49, Bg) > v*|Bet, 1>0 @ M) (1.5)

For the elements of the set M, which are distinct in the specified
sense, we define the scalar product by means of the formulas

One can easily verify that these definitions satisfy the axioms of a
scalar product [1].

Adding to the set M the limit elements according to the metric (1.6),
we obtain complete Hilbert spaces, which we shall denote by Hp and /i,
respectively. The norms of the elements of these spaces are defined by
the formulas

lols =V (9, 9)5, lola = Ve, ¢)a

It is obvious that M is dense in Hp and in H,. The connection between
the spaces Hp and H,, for elements belonging to M, is determined by (1.5),

lela>rlols, T>0 (1.7)

With the aid of (1.7) one can prove a theorem on the imbedding of the
space H, in Hp: with every element of H, one can associate an element of
Hp in such a manner that to distinct elements of H, there correspond
distinct elements of Hp. Hence the inequality (1.7) is extended over the
entire space fl,.

The proof of the existence of a solution is based on the fact that
for every element f& H we have, on the basis of the Cauchy-Buniakovskii
formula, and by (1.7), the following inequality

10, B i <ifilels< ol eem

i.e. (f, Bp) is a functional that is bounded in H,. Hence by the theorem
of Riesz [1] there exists a unique element 9y in Hy in terms of which
one can express the functional in the form (f, Bp) = (¢, 9,),. Assuming
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that J(¢) is defined in the entire space HA' and taking into account (1.6),
we find that

J (@ =@ 04— 29, P)a =19 —Poll4* — I Polly® {1.8)
min J (¢) = — | @oll4% for ¢ =qo

From this it follows that the element which makes the functional (1.4)
a minimum can not belong to M, the domain of definition of the operator A.
In this case we have a unique solution in the extended domain of defini-
tion of the operator A4, i.e. in the space HA' To it there will cor;espond
in the space Hp some limit element g* = Bp* = lim Bp,, ¢, & M (the limit
is here understood in the sense ¢t - P llg 0, n~— ®), The solutions
which do not belong to M will be called generalized solutions.

We now assume that the space H, is separable, and we shall try to con-
struct in it a solution of the variational problem. Let ¢  be a complete,
orthonormalized sequence of elements in H,, 1i.e.

@Pn,Pm)a =0,  if nm, l@alla =1 (n=1,2...) (1.9)

An element ¢, which might make the functional J(¢) a minimum can now
be expressed as an expansion in terms of the orthogonal functions

Po = 2 (Po, Pn)a Pn = ) (f, BPn) Pn (1.10)

n=1 n=1

If in the solution (1.10) one takes a finite number of terms of the
series, then the sequence of elements

o™ = (f, Be)oy + - . . + (f, Bom) ¢m

will be a minimizing sequence since

J(@™) = [¢™ — o lla® — 9o a® — — [ @o[la® = min J ()

If we are given in M a system of elements y_, which is linearly inde-
pendent and complete in H,, then substituting in (1.4) a linear combina-
tion of these elements

Y =a + ... + CnPm a.11)

we obtain J(y") as a function of the parameters aj,. Formulating the con-
ditions for a minimum of the function J(a,), we obtain a system for the
determination of the coefficients
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(A\ph B‘pn) a; + ...+ (AYm, B\pn) am = (f, B'q?'n) (n=1,2,...,m) (112)

One can show [1] that ¢™ is a minimizing sequence when m ~ » if the a,
are determined by the equations (1.12).

Simultaneously one establishes the convergence of the method of Ritz
in the form (1.12) (or the method of squares Ritz [3]). Galerkin’ s method
leads to the same type of system of equations for the determination of
the a in (1.11)

(AY™ —f, BY,) =0 (n=1,2,...,m) (1.13)

Hence, this method will also converge if the operator A has the above
specified properties. The equations (1.13) coincide with one of the
generalized forms of Galerkin’s method proved by several authors [4-6}
under the assumption of the uniqueness of a solution.

In what follows we shall assume that the.space H is the space of
square-summable functions with some weight p (p is a positive function),
i.e. H is an L,(p) space which has been shown [7] to be a complete,
separable, Hilbert space.

2. The axisymmetric problem of thermoelasticity, for the case of a
circular cylinder of finite length, can be reduced to the solution of an
equation in the potential function ¢(p, )

1 9 1 a1 9
000 =<(DD +2,5D + smle =510, 0, D=Proa

Y
; : 2.1)

r z ro L
(p=# t=7 B =m<e<t 0<I<I=F

Here, R is the outer radius of the cylinder; rj is the inner radius,
L the length of the cylinder. The function ¢(p, [) is determined by the
formulas

3 — 3
c,.=F,+i—ai—1—’—"-d—-9+£—Dcp, 5, = F, + L%

p Opar? pr arr ! p? P dp (2.2)
p o , 1—pd 9 Dg —p. 19Dy
=Fot Comp Tt wm T b 0 n=Fr—g

and satisfies the boundary condition (the problem is solved for the
stresses)

. B¢ _1—pdp _{Po
Do = 0, 300 = 5 T if p= 1
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Dy =0, "’fc"’ =0 11’;:{? (2.3)

This can easily be verified by substituting (2.2) into the equations
of equilibrium and into the condition of density, and by taking into
account Hooke’s law and temperature deformations [8)], e.g. in the case
when the cylinder is subjected only to the effect of temperature t(p, [),
whose distribution in the cylinder is determined by the equation

apa'l" : g:,'i"acs fip, ©)

In this case
Fz=0, Frz=0 (2.4)

o g e —%’) -5} o

Pe

S tpdp (1 + 53

Pe

1(p, )= Lﬁ,LiJW” p“$ﬂ+
P £ (e )

If on the right-hand side of the equation of heat conduction, and in
(2.4), in place of f,(p, {) one considers dt/or + f,(p, {), where 7 is
time, then one obtains the case of a quasistationary problenm.

E Ea

Fq = tpdp — Eat

;70./?'0

— §/1PdP

The domain of definition of the operator A = p“lAl2 will be the set M
of functions four times differentiable with respect to p and {, and
satisfying the boundary conditions (2.3). It has been proved [2] that
such a set is dense in L,(p), where in the given case p = p.

We shall show that the operator A = p IA 2 is positive definite with
the operator B = — p~D.

The solution of the equation is not unique and can be determined to
within ¢° = q; + azp2 + (b, + bzpz)g. It is easily seen that ¢° is the
general expression of the zero element defined by Bg® = 0. The space Hp
in which the solution is sought will be determined by the scalar product

and the norm
1

(@95 = {{ £ DD ¥ dpat, ro1%-]

Pe

(Dg)* dpdl  (2.5)

Dewrim
o=
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Integrating by parts, and taking into account the condition (2.3), we
obtain

1
. 1 /8Dy 4Dy aDgaDy , P¢p PP
(A(P:B"P)‘— SS—F;( ap ap +2 6§ ac +apa§23pa€2)dpdc_
0 P

o op Rt OC* 9L

4
% (1) 9% (1 1 o2 9 .
—(1—p) S( e (1) (1) @ (po) 8% (PO)) dg (2.6)

Interchanging ¢ and y in this equation, we find that (4dg, By) = (Ay,
Bg), i.e. the operator A is symmetric. From (2.6) we obtain

o =5 2 2 o

—a-wf[ER - A0HE e en

po*

Let us establish the inequality

p

Po

zl_po’x°<28 a p (2.8)

Suppose that x, and

Here x = x(p), x, = x(1), x5 = x(py), 0N p, S
k 1. Then, obviously

Po
0 have the same sign. Let us set z, = kxl, <
oz
(1—k)x1=$1—--’to=s('3'§dp
[

Applying Holder’s inequality [9], we obtain

a—wrars (§ (TS o) =5 05 ()

Ps ] P

Whence

! Oz\? 1 —po? —x
2SS “’""‘)S T S

Pe

It is easy to verify that f(po, k) does not have an extremum in the
region 0 < p, <1, 0 < k <1, whereas f = 1/2 when k = poz. Obviously, f
will not have an extremum also on the single-values curve k = po". n> 1.

The function
FPo)=(1 —po®) (1 —p™ %)/ 2(1 — po")2
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will then attain its largest and smallest values when p, = 0 and p = 1.

2{n—1
fo=0,  limfe) = m<

nel -

1f x; and x; have different signs, then by the assumed continuity of
z(p), there exists a value p = p, for which x(p,) = 0. Then

oz 1—p2d 4 (o2 1 [9z\®
am (2o, we< SR (E e T {LE) W
Pa Pa P

This establishes the inequality (2.8).

From (2.8) it follows that

V(5 55
o

Making use of (2.9), one can now easily establish the positiveness of
the operator A.

1 3 2
(+ (og) 2t @9

N
no) =

Let us omit from (2.7) the obviously positive terms, so that

a9, 50> (4[58 + (2 ovae = ([ + () Javat 0= 2

s P

From (2.3) it now follows that: p =p,, p=1;, { =0, { = Iy v=0,
i.e. on the perimeter of the rectangle v = 0.

Friedrichs’ [10] inequality can now be applied and we obtain

35[( ) ( Hdpd«’;>72§§v2dpd;=72

v Po

[ (D9)* dodt

P

(=T

This shows that the operator A is positive definite (1.5).

Thus, the solution of equation (2.10) can be determined as the solu-
tion found from the condition that the functional

§

Ps

fDpdpd{, (2.10)

o~

J (9) = IS Sl-:,- ApDededt + 2§
00 L

be a minimum.

Let us determine the nature of the convergence of the approximate
solution to the exact ome. (In the sequel, the integration with respect
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to { will be between the limit 0 and I, and with respect to p from p, to 1; we
shall not indicate these limits from now on.) If ¢, is a solution of the vari-
ational problem, while P is a minimizing sequence, then by (1.8) it follows
from the condition

J(9) =10 — Qolla* — 1 Pola2—~ — Hpoli,? (2.11)

that || o, @, Il 2 = 0, where || ¢]|,2 = (4p. By, and is equal to (2.7). Sub-
stituting ¢, — @; into (2.7) in place of ¢, and taking into account (2.9), we
obtain

1 ( 9Dy, aD%)’ 1 /3Dg,  3Dg, \*
SS?( % — op ) w40 KS?< g ot ) dpdi—~0
. { P, o )2
W+ (s ~apogz) w0 (242)
i.e. the functions p-'dDe, /dp, p~1dDyg, /3L, p~' 3%, /0pdL® converge to the cor-
responding functions of the exact solution in the mean and with the weight p.

Let us prove the convergence in the mean also for the functions p 232q> / Bg
P Dcp’l We consider the identity

735 (3 58 ava =5 §[(CHY — e (P52 =
- N somags 2o — |5 (5) et

Making use of the inequality (a + 5)2 < 2(a + b2), we obtain

(s (3t aoe) <2 (e st aese) + 3 ([§ () —aor (Z) ] &)

If the first integral on the right-hand side is larger than the second one,
then, by using the Cauchy-Buniakovskii inequality, we obtain

SS (p’ T papdt <]/5 SS ,9,,*—35) dpa 2.13)

If the second integral is larger than the first onme, then the validity of the
inequality (2.13) is obvious in view of (2.9). Let us consider still another
identity. In view of (2.3) we have

35 o 58 B (s

Applying Holder’s m:mﬂ 1tyz .e_omm z
(528 oapat) < (22) oot (§ (£ 222" oap
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Whence

¢ D\ 1 [ 0D@\? )
WS pavt <\\ 5 (7)o (2.14)

Substituting ¢y, — ¢, in (2.13) and (2.14) in place of @, and taking into
account (2.12), we find that the functions p—232¢n/ 5§2. p—zl)wn converge in the
mean to the functions p—232¢0/?3§2, and p’21)¢0, respectively.

All of these quantities, of which the convergence in the mean has been proved,
and only these quantities, occur in the expressions for the stress in (2.1).
Therefore, it is now easy to establish the convergence in the mean of the
stresses themselves. Let Onr and Oy defined by the formulas (2.1), correspond
to the approximate Ppe and to the exact P solutions. Then

‘1 B (Po—,) 1 —pP(P— @) 2
SS ((Sm.—-ﬁnr)2 pdpdf, = SS[F ap oz2 ) b ars + %D (P, — (Po)] pdpdg

Making use of Minkovskii’s inequality [9], we obtain

et ([ s ([ (25 i)

i (S% ( ;3!1)2 (32 (‘PO[,;(PT.) >2 dpdg)i/: N (SS %2(0 o g dpd@)w

The convergence of the quantities on the right-hand side has been proved, and
the convergence in the mean with weight p of the functions o, . and g, has there-
by also been established. The convergence for the remaining stresses is proved
in an analogous manner.

Since every term on the right-hand side of the inequality is less than
2|l 9, - @ || 4 because of the relations (2.12) to (2.14), it follows that the de-
viation in the mean of the approximate values of the stresses from the exact
values can be appraised as ” P "¢OIIA'

From (2.11) it is obvious that '|¢n - ¥ ”A2 = J(g,) t “ ¢OIIA2. and if there
exists a quantity 5 such that 5 < -|| Py ”i or -5 >| P ”A2 then

[ —Polls <V T (9, —0 (2.15)

This estimate will become more precise if & comes closer to —"¢0 HAZ. It is
natural to try to determine a functional which would converge to min J(g) =
—]]¢0}!A2 from below, i.e. one whose maximum would be the min J(¢). The con-
struction of this functional will be carried out in accordance with a general
idea of Friedrichs, extended by Sobolev [11]to partial derivatives of high order,
whose solution is connected to the problem on the minimal functional. Let us
apply Sobolev’ s method to the functional (2.10). Let us represent (2.10) in the
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form

1
J@w=0@+2\\ 5Dy doa (246
where O(¢) is given by (2.7).

The equation (2.1) will be a natural condition for a minimum of the
functional J(g) [10]. Let ns make the change of variables Do = u,
3%p/37% = v in O(¢). Then the formula (2.7) yields

ot = [ 4[5+

The equation (2.1) will take on the form

(‘f;-g)” +(g—:)n] dpdf — (1 — ) S [v’ (1) — ;,:—, vt (Po)] dt (247

du I
Du+2-5§2'+a—€-§-=/ (2.18)

If ¢, is now the exact solution of the problem on the minimum of the
functional (2.16), then, sgtting uy = D¢o, vy 32¢0/3§2, we obtain the
following expressions for u, and v, on the basis of (2.3)

"0 1—p p du . ) 0
up =0, 55: —w if p:{l"uo:o, 5§—°=0 if ;:{l (2.19)

In view of the inequality (2.9), we have O(u, v) => 0. Replacing u and
v in (2.17) by the differences ug - u, and Vg~ Vp where u, and v, are
arbitrary functions, we find that (D(u0 - U, vy - v")2> 0. If, for example,

the following boundary conditions

ov 1 —
un=0’ a—;: pp vn if P=p0)p:1 (220)
are satisfied, then O(uo - u,, vy — v)) =0, if, and only if, u, = u,

!ln - vo.

Let us subject u, and v, to the additional conditions (2.18), which is
natural to do when u, = ug and v, "~ v Then

D (uo — u,, vo— v,) =® (uo, vo) + @ (u,, v,) — F (uo, vo, u,, v,)
On the basis of (2.19), and the identity 9%u /30 = Dvy, the F in this

last displayed equation equation can be found by integration by parts in
the form

F =—2S81‘p—°(nun+2 %‘-}-%‘)dpdg:—z SS%D(pofdpdg

dow O(uy, vg) — F = J(gy) = min J(¢), and since O(u,, vy )*min J(¢) >0,
it follows that
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max [— @ (u,, v,)| =min J (¢} for u,— uy, v, >0
Hence it is obvious that
0 =— O (u,, v,

If one sets u, = Dy, v, = 32w/3§2, one obtains & = — O(y), where ¢ is
a solution of the equation (2.1), which in accordance with (2.20) satis-
fies the conditions

Py d—p o
@ == Py, p=1, _Dib:::(}’ 5{3—563:”_’5“52—? (2.21)

One can show that all stresses satisfy at least the fairly rough in-
equality

lop—ooll < +1) Y T (@) — 8,
if none of them is identically zero.

3. Let us apply Galerkin’s method (1.13) to the solution of the axi-
symmetric problem, We select a system of functions in the form ¢, =
xn(p)y.(g). For the purpose of obtaining a simpler system of equations
(1.13), we determine the x (p) as the characteristic functions of the
equation

D (pZ,) =—34,2pZ,, Z,= Dz, p=Ppq p=1, Z,=0

Then the characteristic functions, which have been orthonormalized
with the weight p, will be of the form

Zn = Dxn = GﬂZj, (xnp)) Z, (A'np) =N (;‘n)Jl (l’np) —J (A'n) N, (l‘ﬂp)
tn=V 21Ze (A,) — P Zs* (ApP)1 ™2, Zo (AnP) = N1 (h)Jo (An0)~ J1 (Ay) No (AyP)

Here J,, Jl, No and ¥, are Bessel functions of the first and second

kind of the zero~th and first order; An is a root of the equation

Z1 (AyPe) =0 3.0

As is known [12], the indicated system of functions will be complete
in Ly(p). By integration we obtain

n

Sn 7 1 -6 s In
Z,, () = — Aﬂs? 1 (AP} -+ 1__903(90 i——p+9 1+}l)

¢ ¢
8, = ’5[3 [Zo (A, — Zo (ApPo)], Tn= ;T: [Za (&) — po*Zo (A, p0)]
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The function x, satisfies the conditions

p=p, p=1, Dz,=0, por,/dp=>1—p)z,

n

We determine the y as orthonormalized characteristic functions of
the equation

ymiv =% Y =0, =1l y,=0 y,'=0

Thus we find

1 N cosh¥p, L —cosv, I ) X
Yo = Vi cosh v, b —cosv, [ — v, I—sinv, | finhv, L —sin v, [}

where v, is a root of the equation cosh vml cos le = 1; hence, if
v,l = 4,730, vyl = 7.853, the remaining roots can be determined with
sufficient accuracy by the formula

Vpl=mrn4n/2 m=3,4...

As is known {10]. the system of functions Y, is complete in L2.

By the definition of x, and Y the system of functions Ppm will be a
complete system of elements in M in the subspace HB. From (2.5) and (2.7)
it follows that HA C Hp, since the elements of HA have to have deri-
vatives of higher order than those of the elements of Hp. Hence, the
system of functions is also complete in Hy. Furthermore, this system is
orthonormalized in HB. and it is, therefore, strongly minimal in HA- and
the method of Ritz (1.12), and the equivalent method of Galerkin (1.13),
applied to this problem below, will be stable [13].

We shall look for a solution in the form
N
Py = D AT )Y @)
n,m=1

The system of equations (1.13) will have the following form in this

case (3.2
v_ 4 N N
m 3
(z'""*‘ ﬁ) Aﬂm+2 akm"“nk"}"’m4 2 E’niAim = fn,m (n,m=1,...,N)
n k=1 im=1
Here

1
fom == § § 2000) 1 ©) 1 (0, 0 dpal
0

Po
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i 3,9; TaTi
Bni = 1-po*("°’1-u REET Wit

16 v,2v,,? ( sin v,/ sinv,,l \)

m
Uk = Yoy = Tvd =9 | YT cosvl — "mTEcosv, !

Gy = £

2v,, sin v, ! sin v, !
mm

{{(ttcosv, ) (2:&""} 14 cosv, !

The plus sign must be used in the case when k and = are odd, while
the minus sign applies when &k and = are even. If, however, one of the
number k or = is odd while the other one is even, then %p, = 0. This
latter condition leads to the result that the system of equations (3.2)
separates into two independent systems of equations with a smaller number
of unknown quantities. This simplifies the practical application of the
system of equations (3.2) considerably. It is easy to see that the matrix
of the coefficients of the Aik is symmetric.

Let us consider an example on the application of the system (3.2).
Suppose that on the inner side wall of the cylinder there is given & con-
stant temperature t,, and that on the outer surface of the side wall the
temperature is zero.

In this case a solution of the equation of heat conduction will be
t = ty 1n p/ln p,. By the formulas (2.4) and (3.2) we obtain f = ~Eaty/

4sin vl Eat,
fam = T Foosw) A—Wlape r ™=+ L fun=0, m=2
(k=0,1,2..))

Suppose that the ratio of the inner radius to the outer radius is
Po = 0.5, and that the length of the cylinder L = 2R, i.e. |l = 2, We
shall perform the analysis under the assumption that N = 2. We determine
the roots of the equation (3.1) from tables [14]. We find that A, =6.393,
lz = 12.625. Solving the system of equations (3.2), we obtain

An = — (0.0259 Eato, Agy = 0.00107 E(!lo, Ajg == 0, Ay =0
and, therefore
Pn = [Anz1(p) + Auz: (PN 10 (T)

Let us compute the max 0, and max 0g, when p = p,, where they take on
small values
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maxg, =6, (0.5,1) = — 0.629 Eat,, max 6y = 6 (0.5,1) = — 0.426 Eat,

The values of the stresses when p = Pg = 0.5, computed by means of
formulas for an infinitely long cylinder [8]. will be equal to max g, =
max og = ~ 0.874 Eato, which shows that the max gy is almost twice as
large as the value given above., The function

po*lnp 3 Po* In po 4 .
‘P'—“[(m“ —-po’)_64) #— (1= pod) plnp + 16 p‘lnp}f

is a solution of the equation (2.1) for the given example, which satis-
fies the conditions (2.21). Hence, in accordance with (2.10) and (2.17)
we obtain

V7)) +0®) =y 7@, —06=0065Eat

i.e. the mean error for the stresses does not exceed 20% of their maximum
value,
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